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Abstract. We report on the experimental application of a wavelet based deconvolution method that has
been recently emphasized as a very efficient tool to extract some underlying multiplicative cascade process
from synthetic turbulent signals. For high Reynolds number wind tunnel turbulence (Rx ~ 2000), using
large velocity records (about 25 X 10° integral time scales), a cascading process is identified and found to
be log-normal. This result relies on the Gaussian shape of the kernel G, that determines the nature of the
cascade from a scale a’ to a finer scale a. It is confirmed by investigating various standard quantities such
as the probability density functions of the wavelet transform coefficients or the scaling exponents (; that
characterize the evolution across the scales of the moments of these distributions. Log-normal statistics
are shown to hold on a well defined range of scales, that can be further used as an objective definition of
the inertial range, and to depend on the Reynolds number. We comment on the asymptotic validity of the

log-normal multifractal description.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics — 47.27.Gs Isotropic turbulence;
homogeneous turbulence — 47.27.Jv High-Reynolds-number turbulence

1 Introduction

Since Kolmogorov’s founding work [1] (K41), fully devel-
oped turbulence has been intensively studied for more
than fifty years [2—4]. A standard way to analyze a turbu-
lent flow is to look for some universal statistical properties
of the fluctuations of the longitudinal velocity increments
over a distance I, jv; = v(z+1) — v(z). For instance, inves-
tigating the scaling properties of the structure functions:

Sp(l) = (|6u|") ~ 1%, p>0 (1)

where (---) stands for ensemble average, leads to a spec-
trum of scaling exponents (, which has been widely used
as a statistical characterization of turbulent fields [2-4].
Based upon the assumptions of statistical homogeneity
and isotropy and of constant rate € of energy transfer
from large to small scales, the K41 theory [1] predicts the
existence of an inertial range n < | < L (n and L be-
ing respectively the dissipative and integral scales), where
S, (1) ~ €P/31P/3, Although these assumptions are usually
considered to be correct, there has been increasing numer-
ical [5,6] and experimental [2-4,7-10] evidence that ¢, de-
viates substantially from the K41 prediction {, = p/3, at
large p. The observed nonlinear behavior of ¢, is gener-
ally interpreted as a direct consequence of the intermit-
tency phenomenon displayed by the rate of energy tranfer
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[11,12]. Under the so-called Kolmogorov’s refined hypoth-
esis [13], the velocity structure functions can be rewritten

as Sp(l) ~ <ef/3)lp/3 ~ 17®P/3)FP/3 where ¢ is the local
rate of energy transfer over a volume of size [. The scaling
exponents of S, are thus related to those of the energy
transfer: ¢, = 7(p/3) + p/3.

Richardson’s cascade pioneering picture [14] is often
invoked to account for intermittency: energy is transferred
from large eddies (of size of order L) down to small scales
(of order n) through a cascade process in which the trans-
fer rate at a given scale is not spatially homogeneous as
in the K41 theory [1], but undergoes local intermittent
fluctuations. Over the past thirty years, refined models
including the log-normal model of Kolmogorov [13] and
Obukhov [15] (KO62), multiplicative hierarchical cascade
models like the random (-model, the a-model, the p-
model (for review see Ref. [12]), the log-stable models [16,
17] and more recently the log-infinitely divisible cascade
models [18-21] with the rather popular log-Poisson model
advocated by She and Leveque [22] have overgrown in the
literature as reasonable models to mimic the energy cas-
cading process in turbulent flows. Unfortunately, all exist-
ing models appeal to adjustable parameters that are dif-
ficult to determine by plausible physical arguments and
that generally provide enough freedom to account for the
experimental data for the two sets of scaling exponents ¢,
and 7(p).

The scaling behavior of the velocity structure functions
(Eq. (1)) is at the heart of the multifractal description
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pioneered by Frisch and Parisi [23]. K41 theory [1] is ac-
tually based on the assumption that, at each point of
the fluid, the velocity field has the same scaling behavior
dvy(z) ~ 1*3, which yields the well-known E(k) ~ k=5/3
energy spectrum. By interpreting the nonlinear behavior
of ¢, as a direct consequence of the existence of spatial
fluctuations in the local regularity of the velocity field,
Svi(z) ~ I"®) Frisch and Parisi [23] attempt to capture
intermittency in a geometrical framework. For each h, let
us call D(h) the fractal dimension of the set for which
dv;(z) ~ 1. By suitably inserting this local scaling behav-
ior into equation (1), one can bridge the so-called singular-
ity spectrum D(h) and the set of scaling exponents ¢, by
a Legendre transform: D(h) = min,(ph—(p+1). From the
properties of the Legendre transform, a nonlinear ¢, spec-
trum is equivalent to the assumption that there is more
than a single scaling exponent h. Let us note that from
low to moderate Reynolds number turbulence, the inertial
scaling range is uncomfortably small and the evaluation of
(p is not very accurate. Actually the existence of scaling
laws like equation (1) for the structure functions is not
clear experimentally [10,24] and this even at the highest
accessible Reynolds numbers; this questions the validity of
the multifractal description. Recently, Benzi et al. [25-27]
have shown that one can remedy to the observed departure
from scale-invariance by looking at the scaling behavior of
one structure function against the other. More precisely,
¢p can be estimated from the behavior S,(I) ~ S3(I)%,
if one assumes that ((3) = 1 [4]. The relevance of the
so-called extended self-similarity (ESS) hypothesis is rec-
ognized to improve and to further extend the scaling be-
havior towards the dissipative range [5,25-27]. From the
application of ESS, some experimental consensus has been
reached on the definite nonlinear behavior of (, and its
possible universal character, at least as far as isotropic
homogeneous turbulence is concerned [10]. But beyond
some practical difficulties, there exists a more fundamen-
tal insufficiency in the determination of (. From the anal-
ogy [28] between the multifractal formalism and statistical
thermodynamics, (, plays the role of a thermodynamical
potential which intrinsically contains only some degener-
ate information about the Hamiltonian of the problem,
i.e., the underlying cascading process. Therefore, it is not
surprising that previous experimental determinations of
the (, spectrum have failed to provide a selective test to
discriminate between various (deterministic or random)
cascade models.

In order to go beyond the multifractal description, Cas-
taing et al. [11,21,29-33] have proposed some approach of
the intermittency phenomenon which relies on the valid-
ity of the Kolmogorov’s refined hypothesis [13] and which
consists in looking for a multiplicative cascade process di-
rectly on the velocity field. This approach amounts to
model the evolution of the shape of the velocity incre-
ment pdf from Gaussian at large scales to more inter-
mittent profiles with stretched exponential-like tails at
smaller scales [8,11,34-36] by a functional equation that
relates two scales using a kernel G. This description re-
lies upon the ansatz that the velocity increment pdf at
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a given scale I, P;(0v), can be expressed as a weighted
sum of dilated pdfs at a larger scale I’ > I:

Pi(6v) = / G (Ino) % P (‘5—“> dlno,  (2)

g

where Gy is a kernel that depends on ! and I’ only. Indeed
most of the well-known cascade models can be reformu-
lated within this approach [21,33]. This amounts (i) to
specify the shape of the kernel G(u) which is determined
by the nature of the elementary step in the cascade and
(ii) to define the way G- depends on both [ and I’. In their
original work, Castaing et al. [11,29-32] mainly focused on
the estimate of the variance of G and its scale behavior.
A generalization of Castaing et al. ansatz to the wavelet
transform (WT) of the velocity field has been proposed
in a previous paper [37] and shown to provide direct ac-
cess to the entire shape of the kernel G. This wavelet based
method has been tested on synthetic turbulent signals and
preliminarily applied to turbulence data. The aim of the
present study is to use this new method to process large
velocity records in high Reynolds number turbulence. We
start by briefly recalling our numerical method to esti-
mate G. We then focus on the precise shape of G and show
that, for the analyzed turbulent flow, G is Gaussian within
a very good approximation. Special attention is paid to
statistical convergence; in particular we show that when
exploring larger samples than in previous studies [37-39],
one is able to discriminate between log-normal and log-
Poisson statistics. Going back to the WT coefficient pdf’s
and to the ¢, spectrum, we eventually get additional con-
firmations of the relevance of log-normal statistics and dis-
cuss their robustness when varying the scale range or the
Reynolds number. We conclude by discussing the asymp-
totic validity of the log-normal multifractal description of
the intermittency phenomenon in fully developed turbu-
lence.

2 Experimental evidence for log-normal
cascading process in a high Reynolds number
turbulent flow

2.1 A method of determination of the kernel G

As pointed out in references [28,40], the WT provides a
powerful mathematical framework for analyzing irregular
signals in both space and scale without loss of information.
The WT of the turbulent velocity spatial field v at point
x and scale a > 0, is defined as [41,42]:

rple =+ [ oe (2L a

—00

3)

where ¢ is the analyzing wavelet. Note that the velocity
increment dv;(x) is nothing else than T [v](x,!) computed
with the “poor man’s” wavelet wg; () =0(z —1) — o(x).
More generally, 1 is chosen to be well localized not only in
direct space but also in Fourier space (the scale a can thus
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dently at each scale a, using 32 grey lev-
els from white (|Ty[v](z,a)] = 0) to black
(maxg |Ty[v](z,a)]). (¢) WT skeleton defined

x(m)

be seen as the inverse of a local frequency). Throughout
this study, we will use the set of compactly supported

analyzing wavelets wgfn)) defined in references [37,39]. 1/)873)
are smooth versions of 1/)(%; obtained after m successive

convolutions with the box function . wgzb)) are higher-
order analyzing wavelets with n vanishing moments. The
WT associates to a function in R, its transform defined
on R x Rt and is thus very redundant. Along the line
of the strategy proposed in reference [37], we restrict our
analysis to the modulus mazima of the WT (WTMM) so
that the amount of data to process is more tractable (see
Fig. 1). A straightforward generalization of equation (2)
in terms of the WTMM pdf at scale a, P,(T), then reads

P,(T) = /Gaa/ (u) Py (e “T) e “du, for a’ >a, (4)

where for any decreasing sequence of scales (a1, ...
the kernel G satisfies the composition law:

Gan al

,an)7

=Ganany ® @ Gazays (5)

where ® denotes the convolution product. According to
Castaing et al. [11,21], the cascade is self-similar if there
exists a decreasing sequence of scales {a,} such that
Ga,a, , = G is independent of n. The cascade is said
continuously self-similar [11,21] if there exists a positive,
decreasing function s(a), such that G,. depends on a
and a’ only through s(a,a’) = s(a) — s(a’): Gau (u) =
G(u, s(a,a’)). s(a,a’) actually accounts for the number of

by the set of all the WTMM lines. In (b) and
(c), the small scales are at the top. The ana-

lyzing wavelet is 1/)((;)) .

elementary cascade steps from scale a’ to scale a (s(a)
can be seen as the number of cascade steps from the inte-
gral scale L down to the considered scale a). In the Fourier
space, the convolution property (Eq. (5)) turns into a mul-

tiplicative property for GG, the Fourier transform of G:

Gaa (p) = G(p)* @), for d’ > a. (6)
From this equation, one deduces that G has to be the
characteristic function of an infinitely divisible pdf. Such
a cascade is referred to as a log-infinitely divisible cascade
[18-21]. According to Novikov’s definition [18], the cascade
is scale-similar (or scale-invariant) if

o = (%),

i.e. s(a) = In(L/a). Let us note that in their original work,
Castaing et al. [11] have developed a formalism, based on
an extremum principle, which is consistent with KO62 [13,
15] general ideas of log-normality and which predicts an
anomalous power-law behavior of the depth of the cascade
s(a) ~ (L/a)P. From the computation of the scaling be-
havior of the variance of the kernel G/, they have checked
that the above mentioned power-law behavior could pro-
vide a reasonable explanation for the deviation from scal-
ing observed experimentally on the velocity fluctuation
statistics [11,29-33].

Our numerical estimation of G [37] is based on the
computation of the characteristic function M(p,a) of

(7)
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the WTMM logarithms at scale a:

M(p,a) = / e ITIp, (T)dT. (8)

From equation (4), it is easy to show that G satisfies:

M(pa (l) = érY\aa’ (p) M(p7 a/)‘ (9)

After the WT calculation and the WTMM detection, the
real and imaginary parts of M(p,a) are computed sepa-
rately as (cos(pIn|T'|)) and (sin(pIn |T'|)) respectively. The
use of the WTMM skeleton instead of the continuous WT
prevents M (p,a’) from getting too small as compared to
numerical noise over a reasonable range of values of p, so

that Gaa(p) can be computed from the ratio:

M(p,a)

@aa’(p) = W )

(10)

We refer the reader to references [37,39] for test applica-
tions of this method to synthetic turbulent signals.

2.2 Experimental determination of the kernel G

The turbulence data were recorded by Gagne and collab-
orators in the S1 wind tunnel of ONERA in Modane. The
Taylor scale based Reynolds number is about Ry ~ 2000
and the Kolmogorov k—%/3 law for the energy spectrum
approximately holds on an “inertial range” of about four
decades (from the integral scale L ~ 7 m down to the dis-
sipative scale n ~ 0.27 mm). The overall statistical sam-
ple is about 25 x 107 points long, with a resolution of
roughly 37, corresponding to about 25000 integral scales.
Temporal data are identified to spatial fluctuations of the
longitudinal velocity via the Taylor hypothesis [4,9]. Fig-
ure 1 illustrates the WT and its skeleton, of a sample of
the (longitudinal) velocity signal of length of about two

integral scales. The analyzing wavelet I/J(;) is a first order

compactly supported wavelet. We have checked that all
the results reported below are consistent when changing
both the regularity and the order of .

2.2.1 Uncovering a continuously self-similar cascade

In order to test the validity of equation (6), we first fo-
cus on the scale dependence of C:'aa/ as calculated with
equation (10). Figures 2a and 2b respectively show the
logarithm of the modulus ln|am/| and the phase @gq
of @m/ for various pairs of scales a < a’ in the inertial
range. In Figures 2c and 2d, we succeed in collapsing all
different curves in Figures 2a and 2b onto a single kernel
G = @}l{j‘“’“”, in very good agreement with equation (6)
and the continuously self-similar cascade picture.

In the inserts of Figures 2a and 2b, we compare our
estimation of Ggq for the turbulent signal and for a log-
normal numerical process of the same length generated

A. Arneodo et al.: Towards log-normal statistics in high Reynolds number turbulence

using an algorithm of multiplicative cascade defined on
an orthonormal wavelet basis [43]. The main lines of this
generator of synthetic turbulence are described in Ap-
pendix A. On the numerical log-normal cascade,/\devia—
tions from the expected parabolic behavior of In |G| as
well as from the linear behavior of ¢.. (see Eq. (14)),
become perceptible for |p| > 5. Very similar features are
observed for the turbulence data, showing that the slight
dispersion at large values of p on the curves in Figures 2c
and 2d can be attributed to a lack of statistics. Thus, from
now on, we will restrict our analysis of é(p) top € [—4,4].

In order to collapse all the curves on a same one in
both Figures 2¢ and 2d, we need to adjust s(a,a’) in a
way which actually breaks scale-invariance (Eq. (7)) since
s(a,a’) is found to display some weak nonlinear depen-
dence in In(a’/a). Instead s(a,a’) turns out to be very
well fitted by the functional form:

0B _gb

B )
where the exponent 5 ~ 0.095 somehow quantifies the
departure from scale-similarity (scale-invariance being re-
stored for 3 — 0). We refer the reader to references [37-39]
for quantitative results on the breaking of scale-invariance
in different flow configurations. Let us note that equa-
tion (11) differs from the pure power-law prompted by
Castaing et al. [11,29-33], since when fixing the reference
scale a’, the number of cascade steps required to reach the

scale a is not a=" /B but some corrective constant term
—a'~# /B has to be taken into account.

s(a,a’) =

(11)

2.2.2 Discriminating between log-normal and log-Poisson
cascades

The relevance of equation (6) being established, let us turn
to the precise analysis of the nature of G. Using the Taylor

series expansion of In G(p):

A . ()"
G =om (S 21 ),
k=1
equation (6) can be rewritten as:

~ i ip)k
Gaa (D) = exp (Zs(a, a) e (z? ) ) (13)

k=1

(12)

where the (real valued) coefficients ¢ are the cumulants

of G.

e Log-normal cascade process [13,15]: a log-normal cas-
cade is characterized by a Gaussian kernel [37,39]:

~

) = exp |s(asa') (—imp - a%)] ()

which corresponds to the following set of cumulants:

¢t =-m,co=0° and ¢, =0 for k> 3. (15)
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where A, § and v are parameters. This log-Poisson ker-
nel corresponds to the following set of cumulants:
c1=v+AInd and ¢, = A(Ind)* for k>2. (17) 0.021
[aV]
Note that the log-Poisson process reduces to a log- ©
normal cascade for |plnd| < 1, i.e., in the limit 6 — 1
and A\(In §)?> — o2 where the atomic nature of the 0018 L - _
quantized log-Poisson process vanishes. — ‘ ‘
T T
For a given pair of inertial scales a < a’, we proceed 0.003 - (0)7
to polynomial fits of In |G 44 (p)| and ¢uqs (p), prior to the
use of equation (13) to estimate the first three cumulants
Cr = s(a,a’)ci, as a function of the statistical sample 5’ Mo 1
length for the turbulence data and for both a log-normal 0003 ¢ } e §7
and a log-Poisson synthetic numerical processes. Figure 3 R : %E |
I T R TR NI

shows that statistical convergence is achieved up to the
third order coefficient. For higher order cumulants, how-
ever, our sample total length does not allow an acceptable
convergence. The m and o? parameters of the log-normal
process inferred from the asymptotic values of C7 and Cs
(Figs. 3a, b), namely m = 0.32 and 02 = 0.03, lead to
a very small numerical third order coefficient that can-
not be distinguished from the experimental C3 (Fig. 3c).
In the log-Poisson model, by setting A = 2 (according to
She and Leveque [22], A is the codimension of the most
intermittent structures that are assumed to be filaments),
we were able to find values of § and ~ close to those pro-
posed in reference [22] (6 = (2/3)'/3 and v = —1/9), that
perfectly fit the first two cumulants. However, as seen in

number of data points

Fig. 3. The first three cumulants of G,/ versus the sample
length. Turbulent velocity signal for a = 770n and a’ = 15407
(o and dashed line), log-normal numerical process of param-
eters m = 0.32 and o> = 0.03 (e and solid line) and log-
Poisson numerical process of parameters A = 2, § = 0.89 and
v = —0.082 (A and dots) for the two corresponding scales
a = 2% and o’ = 2°. Numerical processes are scale-invariant
(see Appendix A) so that Cx = In2 - ¢x. Error bars are es-
timates of the r.m.s. deviations of the cumulants from their
asymptotical values.
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Figure 3c, this set of parameters yields a third order cu-
mulant that is more than one order of magnitude higher
than the experimental one. Actually, when taking \ as a
free parameter, good log-Poisson approximations of all the
first three cumulants are obtained for unrealistic values of
A of order 100 and for values of § very close to 1, i.e.,
when the log-Poisson process reduces to the log-normal
model. From these results, we conclude that, for the an-
alyzed wind tunnel velocity signal (Ry ~ 2000), G is a
Gaussian kernel since Cy = 0 implies ¢, = 0 for & > 2.
The large size of our statistical sample allows us to ex-
clude log-Poisson statistics with the parameters proposed
in reference [22].

3 Experimental tests of the validity of
log-normal statistics

3.1 WTMM probability density functions

A first way to check the consistency of our results is to test
the convolution formula (4) on the WTMM pdf’s using a
Gaussian kernel. The results of this test application are
reported in Figure 4. Let us mention that a naive compu-
tation of the pdf’s of the (continuous) WT coefficients at
different scales in the inertial range [39], leads to distribu-
tions that are nearly centered with a shape that goes from
Gaussian at large scales to stretched exponential-like tails
at smaller scales, very much like the evolution observed
for the velocity increment pdf’s [4,8,11,34-36]. But the
wavelet theory [41,42] tells us that there exists some re-
dundancy in the continuous WT representation. Indeed,
for a given analyzing wavelet, there exists a reproducing
kernel [44,45] from which one can express any WT coeffi-
cient at a given point x and scale a as a linear combination
of the neighboring WT coefficients in the space-scale half-
plane. As emphasized in references [40,46,47], a way to
break free from this redundancy is to use the WTMM rep-
resentation. In Figure 4a are reported the results of the
computation of the WTMM pdf’s when restricting our
analysis to the WT skeleton (Fig. 1c) defined by the WT
maxima lines. Since by definition the WTMM are different
from zero, the so-obtained pdf’s decrease exponentially
fast to zero at zero, which will make the estimate of the
exponents (, tractable for ¢ < 0 in Section 3.2. When plot-
ting In P,(In(|T"])) versus In|T|, one gets in Figure 4b the
remarkable result that for any scale in the inertial range,
all the data points fall, within a good approximation, on
a parabola, which is a strong indication that the WTMM
have a log-normal distribution. In Figure 4c, we have suc-
ceeded in collapsing all the WTMM pdf’s, computed at
different scales, onto a single curve when using equation
(4) with a Gaussian kernel G(u, s(a,a’)) where s(a,a’) is
given by equation (11) with S = 0.095 in order to ac-
count for the scale-invariance breaking mentioned above
(Sect. 2.2.1). This observation corroborates the log-normal
cascade picture. Let us point out that, as illustrated in
Figures 4c and 4d, the velocity increment pdf’s are likely
to satisfy the Castaing et al. convolution formula (2) with
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a similar Gaussian kernel, even though their shape evolves
across the scales [39]. The fact that the WTMM pdf’s turn
out to have a shape which is the fixed point of the underly-
ing kernel has been numerically revealed in previous works
[37,39] for various synthetic log-infinitely divisible cascade
processes.

3.2 (4 scaling exponents

A second test of the log-normality of the velocity fluctua-
tions lies in the determination of the {; spectrum. As dis-
cussed in previous studies [40,48], the structure function
approach pioneered by Frisch and Parisi [23] has several
intrinsic insufficiencies which mainly result from the poor-

ness of the underlying analyzing wavelet 1/)(%3 Here we use

instead the so-called WTMM method [28,40,47,48] that
has proved to be very efficient to achieve multifractal anal-
ysis of very irregular signals. The WTMM method consists
in computing the following partition functions:

q

Z(g.a) = Y sup [Ty[vl(z,a')| | , VgeR,
leL(a) (2;261
B (18)

where L(a) denotes the set of all WIMM lines of the
space-scale half-plane that exist at scale a and contain
maxima at any scale a’ < a. A straightforward analogy
with the structure functions Sy(I) (Eq. (1)) yields:

S(g,a) % gggz; ~ abe. (19)

However, there exist two fundamental differences between
Sq(1) and S(g,a). (i) The summation in equation (18) is
over the WT skeleton defined by the WTMM. Since by
definition the WTMM do not vanish, equation (18) allows
us to extend the computation of the scaling exponents ¢,
from positive g values only when using the structure func-
tions (as shown in Sect. 3.1, the velocity increment pdf’s
do not vanish at zero), to positive as well as negative ¢
values without any risk of divergences [48]. (ii) By consid-
ering analyzing wavelets that are regular enough and with
some adjustable degree of oscillation, the WTMM method
allows us to capture singularities in the considered signal
(0 < h < 1) like the structure functions can do, but also in
arbitrary high order derivatives of this signal [40]. In that
respect, the WITMM method gives access to the entire
D(h) singularity spectrum and not only to the strongest
singularities as the structure function method is supposed
to do from Legendre transforming (, for ¢ > 0 only [28,
40,47,48].

Since scale-invariance is likely to be broken, one rather
expects the more general scale dependence of S(g,a)
[37-39]:

S(g; a) = kg exp(—(ys(a)), (20)
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() |

Fig. 4. Probability density functions of the
WTMM for the Modane turbulent velocity sig-
nal. (a) Py(|T]) versus |T| as computed at dif-
ferent scales a = 3857 (o), 770n (W), 15407 (A)
and 30807 (V). (b) In(P.(In(|T]))) versus In|T|
at the same scales. (c¢) and (d) The pdf’s after
being transformed according to equation (4)
with a Gaussian kernel G, and s(a,a’)
(a=P—a'=?)/B where § = 0.095. The (x) in (c)
" - and (d) represent the velocity increment pdf at

In(|T))

where k4 is a constant that depends only on ¢ and s(a) =
(a=# —1)/f consistently with the observed anomalous be-
havior of s(a,a’) given by equation (11). Indeed, S(q,a)
can be seen as a mean of |T'|? so that formally, from the
definition of the characteristic function M(q,a) (Eq. (8)),
one gets:

S(Qa CL) ~ M(_iQ7a)‘ (21)

From the expression (10) of the Fourier transform of the
kernel G and equation (21), one deduces:

S(g,a)

~

Gow (—1q).

S(g,a’)

When further using equation (13), this last equation be-
comes:

(22)

S(g.a) _ oo &
Sq.a) " exp ; s(a,a’) Ch oy (23)
which is consistent with equation (20) provided
Co=—> ag"/k! . (24)
k=1

We have checked that fitting S(q,a)/S(gq,a’) versus q for
the two scales of Figure 3, leads to the same estimates of
Cr = s(a,a’) ci, as above within less than 1%.

scale a = 3087. The solid lines in (b) and (d)

correspond to the Gaussian approximations of
1)

the histograms. The analyzing wavelet is w(s).

Remarks: (i) Let us emphasize that for ¢ = 1#83 , equa-
tion (20) is nothing but the general exponential self-similar
behavior predicted by Dubrulle [49] (for the structure
functions) by simple symmetry considerations. (ii) As ex-
pressed by equation (20), the observed breaking of scale-
invariance does not invalidate ESS hypothesis [25-27]. Ac-
tually, one should better say that equation (20) provides
some validation of ESS.

To estimate the (; spectrum, we thus use the concept
of ESS developed by Benuzi et al. [25-27], i.e., we set (3 = 1
and plot S(q,a) = (kq/k3)S(3,a)% versus S(3,a) in log-
coordinates (for more details see Ref. [38]). As shown in
Figure 5a, the experimental spectrum obtained from lin-
ear regression procedure, remarkably coincides with the
quadratic log-normal prediction ¢, = mq — 0%¢*/2 with
the same parameters as in Section 2.2.2 (Fig. 3), up to
lg| = 10. We have checked that statistical convergence is
achieved for |g| < 8; but even if the convergence becomes
questionable for larger values of ¢, the “error bars” ob-
tained by varying the range of scales used for the ESS
determination of (; show the robustness of the spectrum.
Let us point out that the log-Poisson prediction ¢, =
—vq+ A(1—47), with the She and Leveque [22] parameter
values: A\ = 2, § = (2/3)'/3 and v = —1/9, provides a
rather good approximation of {, for ¢ € [—6, 6], in agree-
ment with the structure function estimations of ¢, [10,
20,22,36] and with our results on the first two cumulants
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Fig. 5. WTMM estimation of the {; spectrum
for the Modane turbulent velocity signal. The

analyzing wavelet is ¢E§)) (a) ¢q versus q. (b)
Deviation of the experimental spectrum from
the K41 ¢4, = ¢/3 prediction. The experimental
measurements (o) are compared to the theoret-
ical quadratic ESS spectrum of a log-normal
process with m = 0.32 and o = 0.03 (solid
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of G (Fig. 3). However, plotting the deviation of the {;’s
from the K41 linear {, = ¢/3 spectrum (Fig. 5b), reveals
a systematic departure of the log-Poisson prediction from
the experimental spectrum, and this even for ¢ € [0, 3] as
shown in the insert of Figure 5b, whereas the log-normal
model still perfectly fits the experimental data. This nicely
corroborates our findings on the third order cumulant of
G (Fig. 3) and shows that very long statistical samples
are needed to discriminate between log-normal and log-
Poisson statistics in fully developed turbulence data. Note
that according to the quadratic fit reported in Figure 5,
the (¢, spectrum should decrease for ¢ > 11, in qualita-
tive agreement with previous discussions [11,36]. However,
since statistical convergence is not achieved for such high
values of ¢, one has to be careful when extrapolating the
¢4 behavior. As reported in reference [36], the number of
data points needed to estimate (, increases exponentially
fast with g. Reaching an acceptable statistical convergence
for ¢ ~ 12 would thus require velocity records about ten
times bigger than those processed in this work.

4 Discussion

To complete our study, we shall now try to answer two im-
portant questions. (i) What is the extent of the scale range
where the statistics can be considered as log-normal? (ii)
Do our results still hold when the Reynolds number is
varied?

4.1 Defining an inertial range

As pointed out in references [8-11,36,50,51], the so-called
“inertial range”, on which structure functions approxi-
mately follow a power law behavior, is narrower than
[n,L]. Actually, because of scale-invariance breaking
[37-39], such an “inertial range” is not well defined and
might even not exist. Thus, we may rather call “inertial
range” the range of scales on which equation (6) holds
with the same kernel G. The extent of the inertial range
may then be estimated using the following quantity:

Oln 7 Ooln S
h(q,a) = 9 (q,a) = B4 (¢,a),

(25)

line) and to the She and Leveque [22] log-
Poisson prediction with A = 2, § = (2/3)/3
and v = —1/9 (dots).

from which one can define the following test function:

H(ga) = h(0,0) ~ £ (h(g,0) + h(~g,0) . (26)

Indeed, using equation (20), it is easy to establish that,
if G is a symmetric distribution around its mean value
m = —cy (i.e. cap+1 = 0 for all kK > 1), then H(q,a) is
independent of a and is given by

Oln k
H(q7a’):Hq: 8(][1(0)
1 /0ln K, Oln K,
+3 (Tt + Tt -a)) - (0

Figure 6 shows that, for different values of ¢, H(g,a) is
scale independent over an inertial range that extends from
a ~ 3007 to a ~ 80007. Since the log-Poisson distribution
is not symmetric, this result constitutes an additional ar-
gument in favor of log-normal statistics. Moreover, the
observation that the plateau value H, scales like ¢2 is in
agreement with equation (27) that generically predicts a
quadratic behavior of Hy, at least for small values of g.
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Fig. 6. (H(q,a))? versus log,(a/n) for different values of g¢:
qg=1 (o), 2 (A),3 (M), 4 (V) and 5 (o). The dashed lines
represent the plateau values H, which scale like ¢°.
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Fig. 7. Cumulant ratios —C2/C1 (a) and Cs/C1 (b), estimated
from (oo with o’ = 2a, as a function of log,(a/n) for four
turbulent flows of different Reynolds numbers Ry ~ 2000 (o),
800 (v), 600 (A) and 280 (H). In (b), the solid and dotted lines
correspond respectively to the log-normal and to the She and
Leveque [22] log-Poisson predictions for C3/C1.

In Figure 7 are reported the results of the computation
of the ratios —C3/C; and C3/C4 from @m/ (p) for all avail-
able scales a and a’ = 2a. In spite of a small increase of
—C3/C1 ~ 0.1 at large scales, the shape of the kernel G,
remains remarkably constant over the range [3007,80007)
with values of C3/C} very close to 0, so that the statistics
can be considered as log-normal on the whole observed
inertial range.

4.2 Investigating the dependence of the statistics on
the Reynolds number

We have reproduced our WT-based analysis on a turbu-
lent velocity signal at Reynolds number Ry ~ 800 (of
about the same length as the previous statistical sample
and with a resolution of 2.57) obtained by Gagne et al.
in a laboratory jet experiment. As illustrated in Figure 7,
for Ry ~ 800, C3/C is significantly higher (of order 0.01)
than for Ry ~ 2000, whereas —C5/C; remains of order
0.15. An inertial range can still be defined, on which G,
keeps a constant “inertial” shape, but for R) ~ 800, this
shape becomes compatible with a log-Poisson distribution
as proposed in reference [22]. We have checked that in that
case, the She and Leveque model provides a better approx-
imation of the (; spectrum than the log-normal model.
This result seems in contradiction with previous studies
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Fig. 8. (3 as a function of the Reynolds number. (a) 8 versus
1/In(Rx); the dotted line corresponds to a fit of the data with
B8 = B(1/In(Ry) — 1/In(R})) with R} = 12000. (b) 8 versus
R;0'556; the dashed line corresponds to a linear regression fit
of the data. Error bars account for variation of 8 according to
the definition of the inertial range.

[10,36] suggesting that turbulent flows may be charac-
terized by a universal (; spectrum, independent of the
Reynolds number, at least for 0 < ¢ < 6. However, as seen
in Figure 5a, for that range of g values, the various mod-
els can hardly be distinguished without plotting ¢/3 — (.
From our WT-based approach, that allows the determi-
nation of (, for negative ¢ values, when using very long
statistical samples to minimize error bars, we can actu-
ally conclude that log-normal statistics no longer provide
a perfect description of the turbulent velocity signal at
Reynolds number Ry < 800. This result, together with
previous numerical [52,53] and experimental [22,54] evi-
dence for the relevance of log-Poisson statistics at low and
moderate Reynolds numbers, strongly suggests that there
might be some transitory regime (R), < 1000) towards
asymptotic log-normal statistics, that could be accounted
for by a quantized log-Poisson cascade or by some other
cascade models that predict the correct relative order of
magnitude of the higher order cumulants (mainly c¢3 and
cq) of the kernel G (Eq. (12)).

In Figure 8 are reported the estimate of the scale break-
ing exponent 8 (Eq. (11)), as a function of the Reynolds
number [38]; the five points correspond to the results ob-
tained for the two previous experiments and for three ad-
ditional data sets corresponding to wind tunnel (R =~
3050), jet (Rx ~ 600) and grid (Ry ~ 280) turbulences.
In Figure 8a, 0 is plotted wersus 1/In(Ry) in order to
check experimentally the validity of some theoretical ar-
guments developed in references [11,49], which predict a
logarithmic decay of 8 when increasing Ry. Indeed the
data are very well fitted by 8 ~ 1/In(R») — 1/In(R3),
where R} ~ 12000, which suggests that scale-similarity is
likely to be attained at finite Reynolds numbers. However,
as shown in Figure 8b, for the range of Reynolds num-
bers accessible to today experiments, the data are equally
very well fitted by a power-law decay with an exponent
which is close to 1/2: 8 ~ R;O'%G. This second possibility
brings the clue that scale-similarity might well be valid
only in the limit of infinite Reynolds number. Whatever
the relevant 8 behavior, our findings for the kernel G4
at Ry ~ 2000 (high statistics in the present work) and
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3050 (moderate statistics in Refs. [37,38]), strongly indi-
cate that at very high Reynolds numbers, the intermit-
tency phenomenon can be understood in terms of a con-
tinuous self-similar multiplicative process that converges
towards a scale-similar log-normal cascade.

Let us note that in Figure 7b, the estimate of C5/Cy
for the lowest Reynolds number velocity signal (R, =~
280) we have at our disposal cannot be distinguished from
the results obtained for the wind-tunnel experiment at
Ry =~ 2000. This observation of log-normal statistics at
low Reynolds number contradicts the above conclusions.
This might well be the consequence of the presence of some
anisotropy at large scales in this grid turbulence where the
velocity increment pdf’s were found to depart significantly
from a symmetric Gaussian shape [55].

5 Conclusions and perspectives

This study has revealed the existence of a scale domain
that we call “inertial range”, where a high Reynolds num-
ber turbulent velocity signal (Rx ~ 2000) displays log-
normal statistics. Our results confirm the relevance of the
continuously self-similar log-normal cascade picture initi-
ated by Castaing et al. [11,21,29-33]. We also emphasize
the fact that such an analysis requires very long statis-
tical samples in order to get a good convergence of the
cumulants of the kernel G' and of the ¢, spectrum. Our
last results about the dependence of the statistics on the
Reynolds number suggest that perfect log-normality may
be reached only for Ry — oo. A similar result is ob-
tained concerning the breaking of scale-invariance [37-39]:
scale-invariance is likely to be restored only for very large
Reynolds numbers. As emphasized by Frisch [4], scale-
invariance together with log-normal statistics for the ve-
locity fluctuations imply that the Mach number of the
flow increases indefinitely which violates a basic assump-
tion needed in deriving the incompressible Navier-Stokes
equations. Let us note that this observation does not, how-
ever, violate the basic laws of hydrodynamics since it is
conceivable that, at extremely high Reynolds numbers, su-
personic velocity may appear. A systematic investigation
of the evolution of the statistics with both the scale range
and the Reynolds number is currently under progress. Fur-
ther analysis of numerical and experimental data should
provide new insights on the departure of G, from its
“inertial” shape outside the inertial range and on the way
it converges towards a Gaussian kernel at high Reynolds
numbers.

Beyond this “one-point” approach, a “two-point” sta-
tistical analysis of turbulent signals involving space-scale
correlation functions looks very promising. In a prelimi-
nary work [56], we have proposed a method, based on the
WT, which has proved to be particularly well suited to
study multiplicative random cascade processes for which
the correlation functions take a very simple form. This
method has already been tested on various log-infinitely
divisible cascade models and preliminarly applied to high
Reynolds number turbulent velocity signals [56] and finan-
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cial time series [57]. Further developments in the context
of fully developed turbulence are in current progress.
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Castaing, S. Ciliberto, Y. Couder, S. Douady, B. Dubrulle,
Y. Gagne, F. Graner, Y. Malecot, J.F. Pinton, P. Tabeling
and H. Willaime. This work was supported by “Direction des
Recherches, Etudes et Techniques” under contract (DRET n°
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Appendix A: Synthetic turbulence on
orthonormal wavelet basis

We present a method of construction of scale-invariant sig-
nals using orthonormal wavelet basis [41,42]. This method
allows us to generate measures as well as functions from a
given deterministic or probabilistic multiplicative cascade
process.

Let us consider the set {¢;x} of periodic wavelets
that form an orthonormal basis of IL?([0, L]). Thus Vf €
L2([0,L]), f can be written under the form:

+oo 2971

F@) =3 3 Winlf) vrua)

=0 k=0
+oo 2771
= dj ke Vi x(), (A1)
j=0 k=0
where
Vie(x) =222 — k). (A.2)

The set of coefficients {d;} therefore provides a com-
plete characterization of the function f. Nowadays, there
exists in the literature a wide range of possible choices
of wavelet basis. Generally, this choice is dictated by the
regularity of the signal one intends to synthetize. In the
present study, we mainly use the Daubechies compactly
supported wavelet basis [42] and more particularly the
“Daubechies 9”7 basis generated from the highly regular
functions (9¢), 9v) illustrated in Figures 10a and 10b re-
spectively (g9¢ is the scale function and ¢¢ its conjugated
wavelet).

The notion of cascade is then rather natural on the
dyadic grid defined by the index (j, k). The construction
rule is very similar to the one commonly used to generate
self-similar measures [12,18,40], except that instead of re-
distributing the measure over sub-intervals with algebraic
weight W, one allocates the wavelet coefficients d; ; in a
multiplicative way on the dyadic grid. As illustrated in
Figure 9, from an arbitrarily chosen value of the coeffi-
cient dg 1, one generates the coefficients d; i, at successive
scales, by iterating the following system:

{ djt1,2k :M]@) djr,
d

(A.3)
i+1,2k4+1 = M;l) djr,
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Fig. 9. Sketch of the construction rule of the wavelet coeffi-

cients d; i, on the dyadic grid, from the arbitrarily chosen co-
efficient do,1 using the hierarchical procedure defined in equa-
tion (A.3).

o¥ 9
(a) (b)

0 0.5 1

Fig. 10. Synthetic turbulent signals generated using the mul-
tiplicative construction rule illustrated in Figure 9 and the
“Daubechies 9” compactly supported orthonormal wavelet ba-
sis [42]. (a) The mother wavelet gt. (b) The corresponding
scale function g¢ (we have arbitrarily set to zero the corre-
sponding coefficients c; = 0). (c) Log-Poisson cascade process
with She and Leveque’s model parameters A = 2, § = (2/3)'/3
and v = —1/9. More precisely, M = ePm+Y  where the
random variable k£ obeys a Poisson law of mean Aln2. (d)
Log-normal cascade process with parameters m = 0.32 and
o? =0.03.

where the M;k)’s are realizations of a random variable
M; with prescribed law (which may possibly depend on

j)- The sign of M;k) is randomly decided at each itera-
tion from “head and tail” game. Then, with the so-defined
set of coefficients d; , one uses equation (A.1l) to con-
struct a signal f from an appropriate wavelet basis. Let
us point out that this synthetic signal can be qualified as
self-similar in the sense that its wavelet coefficients result
from a multiplicative cascade process. If the probability
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law of the M factors does not depend on j, this process is
furthermore scale-invariant.

In Figures 10c and 10d are illustrated two turbulent
synthetic signals generated respectively with a log-Poisson
and a log-normal cascade process in order to mimic the
experimental turbulent velocity signals recorded in the
Modane wind tunnel (Fig. la). We refer the reader to
references [43], for the mathematical demonstration that
these cascade processes actually converge in some
“reasonable” functional spaces with an adequate choice
of the model parameters.
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